Table 2. Selected geometric parameters (Å, °)					
S101	1.410 (3)	C2—C3	1.521 (4)		
S1O2	1.413 (2)	C2—C4	1.534 (5)		
S1O3	1.549 (2)	C2—C5	1.580 (4)		
S1—04	1.549 (2)	C5-C6	1.534 (5)		
03-C1	1.486 (4)	C5-C7	1.533 (5)		
O4—C3	1.478 (4)	C5—C8	1.537 (5)		
C1—C2	1.521 (4)				
01—S1—O2	119.9 (2)	C1-C2-C4	109.1 (3)		
01-51-03	106.85 (14)	C3-C2-C5	109.3 (2)		
O2-S1-O3	110.14 (14)	C1-C2-C5	109.3 (2)		
01-S1-04	106.66 (15)	C4-C2-C5	112.4 (3)		
O2-S1O4	109.82 (14)	O4-C3-C2	111.1 (2)		
O3-S1-O4	101.97 (11)	C6C5C7	108.3 (3)		
C1-03-\$1	115.8 (2)	C6-C5-C8	108.0 (3)		
C3-04-51	114.7 (2)	C7—C5—C8	107.8 (4)		
O3-C1-C2	110.9 (3)	C6C5C2	110.1 (3)		
C3-C2-C1	108.3 (3)	C7—C5—C2	110.2 (3)		
C3-C2-C4	108.4 (3)	C8—C5—C2	112.3 (3)		

Table 3. Comparison of selected geometric parameters (\mathring{A}, \circ) for (1) and (2)

(д,) <i>JOI</i> (1) <i>unu</i> (2)	
	(1)	(2)
\$101	1.409	1.412
S1O2	1.409	1.415
S1O3	1.548	1.552
S1—04	1.549	1.551
C304	1.473	1.481
C1—03	1.485	1.482
C2—C3	1.523	1.494
C1—C2	1.527	1.513
C2—C5 (C α —C β)	1.575	-
01-\$1-02	120.1	119.50
03-51-04	101.9	102.60
04—C3—C2	111.3	109.40
03-C1-C2	110.7	109.00
01-\$1-03	106.8	107.10
02-\$1-04	109.7	109.50

The data were collected with scan rate of $1.3-5.9 \text{ min}^{-1}$, ω scan width of $(0.85 + 0.35 \tan \theta)^{\circ}$ and aperture setting of 4 mm. The structure was solved by direct methods. All non-H atoms were located in the best *E* map. A subsequent difference map revealed the H-atom positions. Refinement was by least squares, with non-H atoms anisotropic and H atoms isotropic. The calculations were performed on a PC (IBM, AT-compatible).

Data collection: CAD-4/PC diffractometer software. Cell refinement: CAD-4/PC diffractometer software. Data reduction: CAD-4/PC diffractometer software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: PLUTON (Spek, 1993). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1071). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Hellier, D. G. & Webb, F. J. (1977). Org. Magn. Reson. 9, 347-350.

- Lowe, G., Thatcher, G. R. J., Turner, J. C. G., Waller, A. & Watkin, D. J. (1988). J. Am. Chem. Soc. 110, 8512-8520.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M (1990). SHELXS86. Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ of Göttingen, Germany.
- Spek, A. L. (1993). *PLUTON. Molecular Graphics Program.* Univ. of Utrecht, The Netherlands.

Van Nuffel, P., Petit, G. H., Geise, H. J. & Lenstra, A. T. H. (1980). Acta Cryst. B36, 1220-1222.

Acta Cryst. (1995). C51, 1703-1707

Scalaradial, a Sesterterpenoid Metabolite from the Marine Sponge *Cacospongia mollior*

RAFFAELLA PULITI

Istituto per la Chimica di Molecole di Interesse Biologico CNR, Via Toiano 6, 80072 Arco-Felice, Napoli, Italy

CARLO ANDREA MATTIA AND LELIO MAZZARELLA

Dipartimento di Chimica, Università 'Federico II', Via Mezzocannone 4, 80134 Napoli, Italy

(Received 3 January 1995; accepted 10 February 1995)

Abstract

The X-ray study of scalaradial [Cimino, De Stefano & Minale (1974). Experientia, 30, 846-847], the major secondary metabolite from the marine sponge Cacospongia mollior, is reported. In the crystal of 12-(acetyloxy)-4,4,8-trimethyl-D-homoandrost-16ene-17,17a-dicarboxaldehyde, C₂₇H₄₀O₄, the asymmetric unit comprises two molecules which display high geometrical and conformational similarity. All the saturated rings are in chair conformations, whereas the cyclohexene ring adopts a half-chair form. The molecule is highly bent in a direction normal to the average skeletal plane, with rings A and C forming an angle of about 30°. The four axial iso-oriented methyl groups in the tetracyclic system produce distortions of the skeletal geometry similar to those observed in other molecules with analogous sequences of axial substituents, and are probably responsible for the remarkable bend of the skeleton.

Comment

Among marine organisms, sponges are a particularly rich source of sesterterpenoids (Faulkner, 1994, and references therein). These substances often display multi-

Bauer, S. H. & Beach, J. Y. (1942). J. Am. Chem. Soc. 64, 1142–1147. Hellier, D. G. & Liddy, H. G. (1988). Magn. Reson. Chem. 26, 671– 674.

ple biological activities or are interesting as potential chemotherapeutic agents. In the course of our studies concerning structural elucidations and biological features of marine natural products, we were interested in crystal studies of new minor metabolites from the widespread sponge Cacospongia mollior, such as the cacospongionolide acetyl derivative (Puliti, De Rosa, Mattia & Mazzarella, 1990) and 12-deacetoxyscalaradial (De Rosa, Puliti, Crispino, De Giulio, Mattia & Mazzarella, 1994). These sesterterpenes have an important ecological role in preventing predation, as they develop an antifeedant effect in fish. For comparison with the strictly correlated 12-deacetoxyscalaradial (De Rosa et al., 1994) and similar molecules, we have performed the X-ray analysis of scalaradial, the main metabolite from the sponge C. mollior. Scalaradial, (I), first studied by Cimino, De Stefano & Minale (1974), is a tetracyclic scalarane-type sesterterpene which has two vicinal aldehydic functions adjacent to an endocyclic unsaturation. Studies have shown that the biological activity of these sesqui- and sesterterpenoid dialdehydes is closely dependent on the stereochemistry of the vicinal aldehyde groups and also on the distance between the carbonyl groups (Cimino, Sodano & Spinella, 1987; Caprioli, Cimino, Colle, Gavagnin, Sodano & Spinella, 1987).

In the scalaradial crystal, the asymmetric unit is formed by two molecules which exhibit a high degree of geometrical and conformational similarity. They are related by a pseudo-translation of nearly a/2 + b/4, coupled to a 10° rotation about an axis roughly perpendicular to the skeletal plane. On superposition, the r.m.s. deviation of the corresponding atoms in the two molecules is only 0.15 Å, the largest differences (<0.43 Å) being associated with hetero-methyl substituents.

A view of one molecule, approximately on the average plane through the rings, with the atomic labelling is shown in Fig. 1; labels for the second molecule have been increased by fifty. In the absence of atoms having strong anomalous scattering, the absolute stereochemistry was not determined and the configuration shown was chosen in accordance with that of the scalarane skeleton (Kazlauskas, Murphy, Wells & Daly, 1980; Cimino, De Rosa, De Stefano, Puliti, Strazzullo, Mattia & Mazzarella, 1987). On this basis, the relative configurations at the C12 and C18 chiral centres were fixed by the present analysis as S^* and R^* , respectively. The molecule is characterized by a tetracarbocyclic scalaranetype skeleton, which displays, as well as the methyl substituents (three of which are in axial β orientations at atoms C8, C10 and C13, respectively), an α -oriented acetoxy group at C12 and two aldehydic functions at C17 and C18 adjacent to the intracycle unsaturation, C16—C17. The β orientation of the equatorial aldehyde group at C18 has been correlated to biological activity (De Rosa *et al.*, 1994, and references therein).

Fig. 1. View of the scalaradial molecule approximately on the average ring plane, with the atomic labelling for non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.

The differences between the corresponding geometrical values in the two independent molecules are within experimental error. The presence of four axial isooriented methyl groups in the tetracyclic system gives rise to distortions in the skeletal geometry similar to those observed in other molecules with analogous sequences of axial substituents (Mattia, Mazzarella, Puliti, Riccio & Minale, 1988; Cimino *et al.*, 1987; Croft, Ghisalberti, Skelton & White, 1983). In particular, the lengthening of C—C bond distances within the central core of the molecule, from atoms C4 to C18, and the widening of angles C4—C5—C10, C8—C9—C10 and C8—C14—C13 (Table 2) are similar to those found in 12-deacetoxyscalaradial (De Rosa *et al.*, 1994).

All the saturated rings are in chair conformations, whereas the cyclohexene ring adopts a half-chair form that is distorted in the first molecule towards a half boat. Conformational details for each ring are reported in the supplementary material, together with puckering parameters (Cremer & Pople, 1975), which show the distortion from the ideal form. The acetoxy groups are strictly planar with the carbonyl O atoms *cis* to ring atoms C12 and C62. With respect to 12-deacetoxyscalaradial, the presence in (I) of an acetoxy substituent in the 12 position, does not affect the orientation of the β -axial aldehyde group, determined by the intramolecular contacts with the adjacent substituents.

The title molecule presents a remarkable bend in the skeleton approximately normal to the mean molecular

plane (Fig. 2). This bending can be quantified by the angle between the average planes of rings A and C, which is close to 30° in both molecules. Similar bending has been observed for 12-deacetoxyscalaradial, indicating that it is the result of the short contacts between the axial methyl groups [C—C distances ≥ 3.137 (4) Å] rather than the crystal packing (Fig. 3), which is governed only by normal van der Waals interactions.

Fig. 2. View of the scalaradial molecule approximately normal to the average molecular plane, showing the bending of the skeleton.

Fig. 3. The crystal packing projected onto the *bc* plane. Fine and thick lines indicate the two independent molecules in the asymmetric unit.

Experimental

Crystals of scalaradial were obtained by slow evaporation of an ethanol-ethyl ether solution of the compound.

Crystal data

$C_{27}H_{40}O_4$	Cu $K\alpha$ radiation
$M_r = 428.58$	$\lambda = 1.5418$ Å
Orthorhombic	Cell parameters from 25
P212121	reflections
a = 12.139 (3) Å	$\theta = 24-28^{\circ}$
<i>b</i> = 14.635 (3) Å	$\mu = 0.559 \text{ mm}^{-1}$
c = 27.951 (7) Å	T = 293 K
$V = 4966 (2) \text{ Å}^3$	Prism
Z = 8	$0.8 \times 0.4 \times 0.3$ mm
$D_r = 1.15 \text{ Mg m}^{-3}$	Colourless

Data collection

Enraf-Nonius CAD-4F
diffractometer
ω –2 θ scans
Absorption correction:
refined from ΔF
(DIFABS; Walker &
Stuart, 1983)
$T_{\min} = 0.798, T_{\max} =$
1.000
5739 measured reflections

Refinement

C1 C2 C3 C4 C5 C6 C7 C8

C9

C10 C11 C12 C13 C14 C15

C16 C17

C18 C19

C20 C21

C22 C23

C24 C25 C26

C27 O51 O52

053 054 C51 C52

C53 C54

R = 0.040 wR = 0.039
wR = 0.039
S = 0.89
5031 reflections
560 parameters
H-atom parameters not
refined
$w = 1/[\sigma^2(F_o) + (0.01F_o)^2]$
+ 0.6] (Killean &
Lawrence, 1969)

5739 independent reflections 5031 observed reflections $[l \ge 2\sigma(l)]$ $\theta_{max} = 76^{\circ}$ $h = 0 \rightarrow 16$ $k = 0 \rightarrow 19$ $l = 0 \rightarrow 35$ 3 standard reflections frequency: 240 min

intensity decay: 3%

$(\Delta/\sigma)_{max} = 0.01$ $\Delta\rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.10 \text{ e} \text{ Å}^{-3}$ Extinction correction: Stout & Jensen (1968) Extinction coefficient: 9.2 (1) × 10⁻⁷ Atomic scattering factors from International Tables for X-ray Crystallography

(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$B_{\rm eq} = (1/3) \sum_i \sum_j B_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$					
x	у	Z	B_{eq}		
0.9464 (3)	0.4437 (2)	0.22115 (9)	12.42 (8)		
1.1818 (2)	0.5508 (2)	0.18438 (7)	8.42 (6)		
0.9306 (1)	0.45801 (9)	0.33294 (6)	4.79 (3)		
0.7917 (2)	0.3602 (1)	0.31987 (8)	7.68 (5)		
0.7789 (2)	0.5075 (2)	0.4643 (1)	6.26 (7)		
0.7465 (3)	0.4984 (2)	0.5169(1)	7.86 (8)		
0.8386 (3)	0.5314 (2)	0.5495 (1)	7.47 (8)		
0.8760 (2)	0.6292 (2)	0.54024 (9)	5.82 (6)		
0.9027 (2)	0.6376 (2)	0.48583 (9)	4.92 (5)		
0.9505 (2)	0.7297 (2)	0.47089 (9)	5.45 (5)		
1.0050 (2)	0.7234 (2)	0.42192 (9)	5.14 (5)		
0.9265 (2)	0.6905 (2)	0.38221 (8)	4.63 (5)		
0.8674 (2)	0.6025(1)	0.39979 (8)	4.45 (5)		
0.8121 (2)	0.6057 (2)	0.45017 (9)	5.06 (5)		
0.7933 (2)	0.5653 (2)	0.35951 (9)	5.23 (5)		
0.8620 (2)	0.5346 (2)	0.31716 (9)	5.01 (5)		
0.9379 (2)	0.6097 (2)	0.29715 (8)	4.79 (5)		
0.9989 (2)	0.6599 (2)	0.33872 (8)	4.62 (5)		
1.0733 (2)	0.7365 (2)	0.31953 (9)	5.97 (6)		
1.1329 (2)	0.7115 (2)	0.27551 (9)	5.91 (6)		
1.1146 (2)	0.6356 (2)	0.25054 (9)	5.43 (5)		
1.0283 (2)	0.5661 (2)	0.26470 (9)	5.33 (5)		
0.9762 (3)	0.5210 (2)	0.2212(1)	7.64 (8)		
1.1861 (3)	0.6181 (2)	0.20966 (9)	6.74 (7)		
0.9820 (3)	0.6454 (2)	0.5694 (1)	7.52 (8)		
0.7895 (3)	0.6982 (2)	0.5582 (1)	7.74 (8)		
0.7071 (2)	0.6654 (2)	0.4494 (1)	6.51 (7)		
0.8483 (2)	0.7708 (2)	0.3699(1)	6.15 (6)		
0.8661 (2)	0.6744 (2)	0.26655 (9)	5.99 (6)		
0.8840 (2)	0.3745 (2)	0.33179 (9)	5.41 (5)		
0.9642 (2)	0.3038 (2)	0.3485 (1)	6.38 (7)		
0.4154 (2)	0.2252 (1)	0.22041 (8)	8.95 (6)		
0.6549 (2)	0.3350(1)	0.18975 (7)	7.54 (5)		
0.4341 (1)	0.24608 (9)	0.34007 (6)	4.92 (3)		
0.3269 (2)	0.1218 (1)	0.33599 (7)	7.54 (5)		
0.2589 (3)	0.2907 (2)	0.4685 (1)	6.86 (7)		
0.2286 (3)	0.2864 (2)	0.5218 (1)	8.21 (8)		
0.3166 (3)	0.3313 (2)	0.5524 (1)	8.12 (8)		
0.3423 (2)	0.4316 (2)	0.53911 (9)	6.34 (7)		

C55	0.3665 (2)	0.4345	(2) 0.48443 (9)	5.19 (5)	C7C8C14	107.6 (2)	C57—C58—C64	107.8 (2)
C56	0.3995 (2)	0.5287	(2) 0.46590 (9)	5.90 (6)	C7—C8—C24	107.5 (2)	C57—C58—C74	107.2 (2)
C57	0.4515 (2)	0.5228	(2) 0.41641 (9)	5.51 (6)	C9-C8-C14	105.6 (2)	C59—C58—C64	106.9 (2)
C58	0.3771(2)	0.4759	(2) 0.37886 (8)	4.48 (5)	C9-C8-C24	114.6 (2)	C59-C58-C74	114.6 (2)
C50	0.2257 (2)	0.2844	(2) 0.57000 (0)	1 10 (5)		1128(2)	C64 C58 C74	112 2 (2)
C39	0.3337 (2)	0.3044	(2) 0.40030 (8)	4.44 (J)	$C_{1}^{+} - C_{0}^{-} - C_{2}^{+}$	117.2 (2)		112.2(2)
C00	0.2799(2)	0.3890	(2) 0.45077(9)	5.08 (5)		117.3(2)	C38-C39-C60	110.7(2)
C61	0.2713 (2)	0.3307	(2) 0.36266 (9)	5.02 (5)	C8-C9-C11	109.3 (2)	C58—C59—C61	109.8 (2)
C62	0.3452 (2)	0.3031	(2) 0.32131 (8)	4.72 (5)	C10-C9-C11	114.8 (2)	C60—C59—C61	115.1 (2)
C63	0.3997(2)	0.3852	(2) 0.29663 (8)	4.42 (5)	C1-C10-C5	107.5 (2)	C51—C60—C55	108.2 (2)
C64	0.4507 (2)	0.4509	(1) 0.33460 (8)	4 41 (4)	C1_C10_C9	108 4 (2)	C51_C60_C59	108 3 (2)
0(5	0.4007 (2)	0.4307	(1) 0.55400 (0)	F.A.((F)		100.4 (2)	C51 C60 C73	107.4 (2)
C03	0.5010(2)	0.5352	(2) 0.30984 (9)	5.40 (5)	CI = CI0 = C23	108.4 (2)	C31-C60-C73	107.4 (2)
C66	0.5703 (2)	0.5099	(2) 0.26861 (9)	5.47 (5)	C5-C10-C9	106.4 (2)	C55-C60-C59	105.7 (2)
C67	0.5688 (2)	0.4280	(2) 0.24769 (8)	5.08 (5)	C5-C10-C23	114.9 (2)	C55—C60—C73	114.8 (2)
C68	0 4949 (2)	0 3516	(2) 0.26310 (8)	4 79 (5)	C9-C10-C23	1110(2)	C59-C60-C73	112 3 (2)
C 60	0.4460 (2)	0.3010	(2) 0.2001(1)	6 27 (6)		110.8 (2)	C50 C61 C62	111 1 (2)
C 09	0.4400 (3)	0.3029	(2) $0.2201(1)$	0.37 (0)		110.8 (2)	CJ9-C01-C02	111.1(2)
C70	0.6482 (2)	0.4088	(2) 0.2099(1)	6.39 (6)	03-012-011	107.7 (2)	053	108.4 (2)
C71	0.4466 (3)	0.4604	(3) 0.5669 (1)	8.9 (1)	O3-C12-C13	108.4 (2)	O53—C62—C63	106.9 (2)
C72	0.2480 (3)	0.4942	(2) 0.5555 (1)	7.49 (7)	C11-C12-C13	113.6 (2)	C61—C62—C63	112.9 (2)
C73	0.1677(2)	0.4385	(2) 04491(1)	6.60 (7)	C12_C13_C14	110 5 (2)	C62_C63_C64	110 3 (2)
074	0.1077 (2)	0.4303	(2) $0.4491(1)$	0.00(7)		100.0 (2)	C02-C03-C04	110.5 (2)
C /4	0.2845 (2)	0.5446	(2) 0.3658(1)	6.00 (6)	C12 - C13 - C18	109.9 (2)	L62—L63—L68	110.0(2)
C75	0.3116 (2)	0.4321	(2) 0.26550 (9)	5.62 (6)	C12-C13-C25	107.5 (2)	C62—C63—C75	107.7 (2)
C76	0.4155 (3)	0.1562	(2) 0.34416 (9)	5.65 (6)	C14C13C18	106.9 (2)	C64—C63—C68	107.9 (2)
C77	0 5168 (3)	0 1082	(2) 0.3592 (1)	7 03 (8)	C14-C13-C25	1130(2)	C64_C63_C75	1126(2)
CII	0.5100(5)	0.1002	(2) 0.5572 (1)	7.95(0)	C19 C12 C25	100.0 (2)	C64 C63 C75	109.2 (2)
						109.0 (2)	C06-C05-C75	108.3 (2)
					C8-C14-C13	116.5 (2)	C58—C64—C63	117.0 (2)
					C8-C14-C15	113.1 (2)	C58C64C65	113.2 (2)
T.	able ? Sala	octad acam	atric parameters	(Å o)	C13-C14-C15	111.3 (2)	C63-C64-C65	110.2 (2)
16	able 2. Sele	cieu geon	lerric parameters	(A, [*])	C14 C15 C16	1125(2)	C64 C65 C66	1121(2)
01 010		1 107 (4)	051 060	1 106 (2)		113.3 (2)	04-00-00	112.1(2)
01-019		1.187 (4)	031-09	1.190 (3)	C15-C16-C17	124.3 (2)	C65C67	124.1 (2)
02C20		1.214 (4)	052-070	1.221 (4)	C16C17C18	122.7 (2)	C66C67C68	123.6 (2)
03—C12		1.465 (3)	O53—C62	1.461 (3)	C16C17C20	117.2 (2)	C66C67C70	118.8 (2)
03-C26		1.347 (3)	053-076	1.340 (3)	C18 C17 C20	120.0 (2)	C68 C67 C70	117 4 (2)
04_026		1 187 (3)	054	1 200 (4)		120.0 (2)	C03_C07_C70	117.4 (2)
04 020		1.107 (5)	054-070	1.209 (4)	C13-C18-C17	111.3 (2)	03-08-07	112.3 (2)
CI-CZ		1.528 (5)	C31-C32	1.536 (4)	C13-C18-C19	110.5 (2)	C63—C68—C69	109.4 (2)
C1-C10		1.544 (4)	C51—C60	1.551 (4)	C17-C18-C19	111.7 (2)	C67—C68—C69	110.9 (2)
C2—C3		1.520 (5)	C52—C53	1.519 (5)	01-019-018	1227(3)	051-69-68	124 1 (3)
C3-C4		1 524 (4)	C53-C54	1 546 (4)	02 C20 C17	124.0 (3)	052 C70 C67	122 2 (2)
C4 C5		1.560 (4)	CEA CEE	1.540 (4)	02-020-017	124.9 (3)	032	123.3 (3)
C4C3		1.500 (4)	C34-C33	1.557 (4)	03-026-04	124.3 (2)	053-076-054	122.8 (2)
C4C21		1.542 (4)	C54—C71	1.545 (4)	O3C27	110.3 (2)	O53-C76-C77	110.5 (2)
C4C22		1.541 (4)	C54C72	1.536 (4)	O4C26C27	125.5 (2)	O54C76C77	126.6 (2)
C5C6		1.526 (3)	C55-C56	1.527 (4)				
C5-C10		1 556 (3)	C55-C60	1 557 (3)	C26O3C12C13		C76O53C62C63	-151.5 (2)
C6 C7		1.530 (5)	C55—C60	1.537 (5)	C12-03-C26-04	-1.5 (4)	C62-053-C76-054	-4.9(3)
CoC/		1.525 (4)	C36-C37	1.523 (4)	C21-C4-C5-C10	168 8 (2)	C71-C54-C55-C60	168 2 (2)
C7—C8		1.540 (3)	C57—C58	1.546 (3)	C_{22}^{-1} C_{4}^{-1} C_{5}^{-1} C_{10}^{-1}	71 3 (3)	C72 C54 C55 C60	71.2 (2)
C8C9		1.555 (3)	C58—C59	1.552 (3)		- /1.3 (3)	C72-C34-C33-C00	- /1.2 (3)
C8C14		1.565 (3)	C58-C64	1.570 (3)	C6-C5-C10-C23	-66.2 (3)	C56C55-C60C/3	-65.9 (3)
C8_C24		1 551 (3)	C58 C74	1 551 (3)	C24C8C9C10	-70.0 (3)	C74C58C59C60	66.7 (3)
CoC24		1.551 (5)	CJ6C/4	1.551 (5)	C25-C13-C14-C8	73.4 (3)	C75-C63-C64-C58	73.9 (2)
C9C10		1.501 (3)	C39-C60	1.562 (3)	C15_C16_C17_C18	06(4)	C65-C66-C67-C68	09(4)
C9C11		1.540 (3)	C59—C61	1.532 (3)		1777(3)	C66 C67 C70 O53	177 9 (2)
C10-C2	3	1.545 (3)	C60—C73	1.539 (4)	02	1/7.7 (3)	00-07-07-032	177.8 (3)
C11-C12	2	1.516 (3)	C61-C62	1.518 (3)	C17—C18—C19—O1	146.4 (3)	C67—C68—C69—O51	154.5 (3)
C12_C17	3	1 530 (3)	C62_C63	1 535 (3)				
012-01	3 A	1.559 (5)	C02—C03	1.555 (5)	H atoms were place	ed on the ba	sis of geometric cons	iderations
CI3-CI4	4	1.562 (3)	C63-C64	1.560 (3)				1 .
C13C18	8	1.561 (3)	C63—C68	1.567 (3)	and Δr map sugge	estions (lor	nyoroxyi and metny	groups).
C13-C25	5	1.545 (4)	C63C75	1.540 (3)	All H atoms wer	e included	as fixed atoms in	the final
C14-C15	5	1.536(3)	C64C65	1.540 (3)	refinement with is	atmonia diam		
C15-C10	6	1 474 (4)	C65-C66	1 474 (4)	rennement, with is	outopic disp	placement parameters	set equal
C16 C17	7	1 221 (4)	C66 C67	1,222 (2)	to B_{eq} of the parent	t atoms.		
	/ 0	1.551 (4)	00-07	1.333 (3)	The structure we	a column h	magne of the CIDO	
C17—C13	8	1.513 (4)	C67—C68	1.497 (3)	The structure wa	is solved by	y means of the SIR88	s package
C17—C20	0	1.458 (4)	C67—C70	1.458 (4)	(Burla <i>et al.</i> , 1989)). For the c	rystallographic data, t	he equip-
C18C19	9	1.521 (4)	C68—C69	1.519 (4)	mont of the CDACI	af the Um	inensity (Endering II)	of Manles
C76-C7	7	1 495 (4)	C76-C77	1 477 (4)	ment of the CIVIC	of the Un	iversity rederico II	or maples
CLU CL	,	1.475 (4)	elo-ell	1.4//(4)	was used. All calcul	lations were	performed using Enra	af-Nonius
C12-03-	C26	116.6 (2)	C62-053-C76	117.8 (2)	SDD coffmune (D. A	Enne 6	Accession Inc. 1095	
C2_C1_	0	113 2 (2)	C52_C51_C60	1128(2)	SDF software (D. A	r r r r r r r r r r r r r r r r r r r	Associates, Inc., 1985)	on a Mi-
	C3	111 1 (2)	C51 C51 C52	111.0 (2)	croVAX 3100 com	outer.		
CIC2-	~	111.1 (3)	C31-C32-C33	111.2 (3)				
C2-C3-	-04	114.6 (3)	C52—C53—C54	114.6 (3)				
C3C4	-C5	107.6 (2)	C53C54C55	107.5 (2)	The authors are	orsteful i	to Dr S De Rosa o	f ICMIP
C3C4	-C21	107.7 (2)	C53-C54-C71	107.7 (3)	The autions all	- grawiui i	U DI J. DU KUSA U	
C3_C4	-C22	110.9 (2)	C53_C54_C72	110 2 (3)	tor supplying a s	ample of s	calaradial.	
	C22	100.2 (2)		10.2 (3)	······································	- F - 5 - 5		
<u>13-14</u>	-021	109.3 (2)	C33-C34-C/1	109.3 (2)				
C5-C4-	-C22	114.0 (2)	C55—C54—C72	114.7 (2)	Lists of the first f	*****	amia diant	
C21-C4	C22	107.2 (2)	C71—C54—C72	107.3 (2)	Lists of structure fac	urs, anisotr	opic displacement para	meters, H-
C4C5	C6	114.6 (2)	C54-C55-C56	114.0 (2)	atom coordinates and	conformation	nal details for each ring	, including
C4C5	-010	1170(2)	C54_C55_C60	1170(2)	nuckering narameters	have been d	eposited with the ILCr (Reference
	-C10	111.0 (2)		117.0 (2)	NA116A) O	have been u	chosing with the IOCI (Reference.
	-010	111.0 (2)	000-000	110.7 (2)	INA1154). Copies ma	y be obtained	ed unrough The Manag	ing Editor,
C5-C6-	-07	110.9 (2)	C55—C56—C57	111.4 (2)	International Union of	Crystallogra	phy, 5 Abbey Square, Cl	hester CH1
C6C7	-C8	113.5 (2)	C56—C57—C58	113.6 (2)	2HU, England.			
C7—C8—	-C9	108.5 (2)	C57-C58-C59	107.9 (2)	,			

References

- B. A. Frenz & Associates, Inc (1985). SDP Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.
- Caprioli, V., Cimino, G., Colle, R., Gavagnin, M., Sodano, G. & Spinella, A. (1987). J. Nat. Prod. 50, 146-151.
- Cimino, G., De Rosa, S., De Stefano, S., Puliti, R., Strazzullo, G., Mattia, C. A. & Mazzarella, L. (1987). Tetrahedron, 43, 4777–4784.
- Cimino, G., De Stefano, S. & Minale, L. (1974). Experientia, 30, 846-847.
- Cimino, G., Sodano, G. & Spinella, A. (1987). Tetrahedron, 43, 5401-5410.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1361.
- Croft, K. D., Ghisalberti, E. L., Skelton, B. W. & White, A. H. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 155-159.
- De Rosa, S., Puliti, R., Crispino, A., De Giulio, A., Mattia, C. A. & Mazzarella, L. (1994). J. Nat. Prod. 57, 256–262.
- Faulkner, D. J. (1994). J. Nat. Prod. Rep. 11, 355-394.
- Kazlauskas, R., Murphy, P. T., Weils, R. J. & Daly, J. J. (1980). Aust. J. Chem. 33, 1783–1797.
- Killean, R. C. G. & Lawrence, J. L. (1969). Acta Cryst. B25, 1750– 1752.
- Mattia, C. A., Mazzarella, L., Puliti, R., Riccio, R. & Minale, L. (1988). Acta Cryst. C44, 2170-2173.
- Puliti, R., De Rosa, S., Mattia, C. A. & Mazzarella, L. (1990). Acta Cryst. C46, 1533-1536.
- Stout, G. H. & Jensen, L. H. (1968). In X-ray Structure Determination. New York: Macmillan.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Comment

The use of semicarbazones and thiosemicarbazones as anti-cancer and anti-viral agents has been known for many years (West *et al.*, 1993; Padhye & Kauffman, 1985). In 1956, the activity of pyridine-2-carboxaldehyde thiosemicarbazone in the lymphoid-leukaemia-1210 test was reported (Ali & Livingstone, 1974). In 1990, the compounds 2-acetylpyridine semicarbazone and thiosemicarbazone were reported to show activity against type-2 herpes simplex viral infections (Sidwell, Huffman, Schafer & Shipman, 1990). While these semicarbazones and thiosemicarbazones were shown to be effective while acting alone, the carcinostatic activity of kethoxal bis(thiosemicarbazone) was enhanced by the presence of Cu and Zn ions (Ali & Livingstone, 1974).

Bismuth drugs have been well documented for hundreds of years and several bismuth complexes, including the subsalicylate and citrate, are currently used to treat gastric disorders (Baxter, 1992). The synthesis of bismuth complexes with semicarbazone ligands seems a natural progression given their well noted activities. Crystals obtained in an unsuccessful attempt to synthesize a bismuth complex with salicylaldehyde semicarbazone (SASC) yielded a unique crystal structure of this ligand with a single molecule of acetic acid (HAc). This arrangement displays a high degree of hydrogen bonding involving SASC in a conformation that is stable enough to prevent the formation of the metal complex.

SASC-HAc

Acta Cryst. (1995). C51, 1707-1709

Salicylaldehyde Semicarbazone–Acetic Acid Hydrogen-Bonded Complex

Khalil A. Abboud,* Stephen P. Summers and Gus J. Palenik

Department of Chemistry, University of Florida, Gainesville, FL 32611, USA

(Received 1 July 1994; accepted 13 February 1995)

Abstract

The crystals of $C_8H_9N_3O_2.C_2H_4O_2$ consist of a one-toone ratio of salicylaldehyde semicarbazone and acetic acid. Each molecule of salicylaldehyde semicarbazone is joined to an acetic acid molecule by a double hydrogen bond. This arrangement is very similar to the typical carboxylic acid dimer. The crystal structure exhibits a three-dimensional network of hydrogen bonds involving all of the possible hydrogen-bond donors and acceptors in both molecules.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

A displacement-ellipsoid drawing (SHELXTL-Plus; Sheldrick, 1991) of the molecules with the atomlabelling scheme is presented in Fig. 1. The structure of SASC has been determined previously (Valdés-Martínez, Toscano, Salcedo, Cea-Olivares & Meléndez, 1990). We report the crystal structure of the title compound SASC-HAc, crystallized in a 1:1 ratio. All of the structural features of SASC are similar to those of the previously reported structure. The carbonyl group is in the anti conformation with respect to N7, a conformation observed in similar compounds (Soriano-García, Valdés-Martínez & Toscano, 1988; Chattopadhyay, Mazumdar, Banerjee, Ghosh & Mak, 1988; Soriano-García, Valdés-Martinez, Toscano, Gomez-Lara & Villalobos-Penalosa, 1986; Naik & Palenik, 1974; Nardelli, Fava & Giraldi, 1965). Bond lengths and angles of the C1–C8 chain suggest π electron delocalization along the chain. This delocalization is also supported by the torsion angles along the chain: C2-C1-C7-N7 = -2.3(4), C1-C7-N7-N8 = -179.5(3), C7 - N7 - N8 - C8 = 172.0(2), N7 -N8-C8-N8b = 7.4(4) and N7-N8-C8-O8a =-172.1 (2)°. The least-squares plane of the semicar-